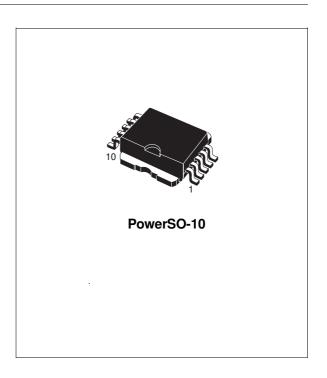
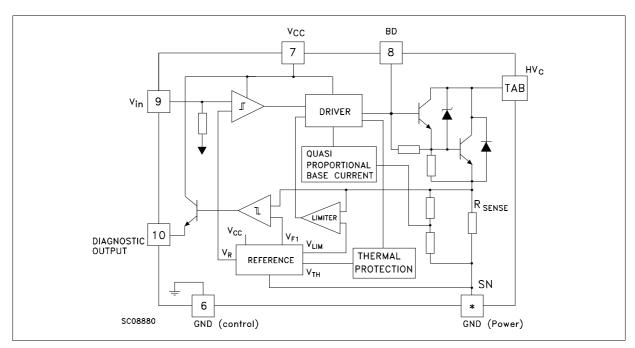


VB025SP


HIGH VOLTAGE IGNITION COIL DRIVER POWER IC

TYPE	V _{cl}	I _{cl}	I _d	
VB025SP	380 V	9 A	100 mA	


- PRIMARY COIL VOLTAGE INTERNALLY SET
- COIL CURRENT LIMIT INTERNALLY SET
- LOGIC LEVEL COMPATIBLE INPUT
- DRIVING CURRENT QUASI PROPORTIONAL TO COLLECTOR CURRENT
- SINGLE FLAG-ON COIL CURRENT

DESCRIPTION

The VB025SP is a high voltage power integrated circuit made using STMicroelectronics VIPower Technology, with vertical current flow power darlington and logic level compatible driving circuit. Built-in protection circuits for coil current limiting and collector voltage clamping allows the VB025SP to be used as a smart, high voltage, high current interface in advanced electronic ignition systems.

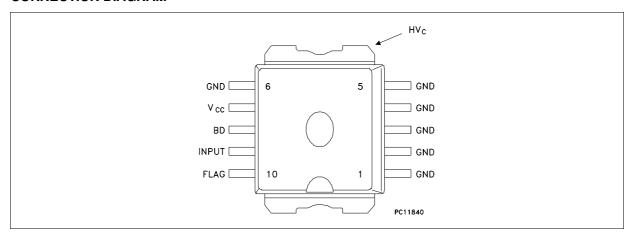
BLOCK DIAGRAM

March 1999 1/7

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
HVc	Collector Voltage (Internally Limited)	-0.3 to V _{clamp}	V
Ic	Collector Current (Internally Limited)	10	Α
I _{C(gnd)}	DC Current on Emitter Power	± 10.5 (*)	Α
Vcc	Driving Stage Supply Voltage	-0.3 to 7	V
Is	Driving Circuitry Supply Current	± 200	mA
I _{s(gnd)}	DC Current on Ground Pin	± 1	Α
V _{in}	Input Voltage	-0.3 to VCC + 0.3	V
l _{in}	Maximum Input Current	100	mA
f _{in}	Logic Input Frequency in Operative Mode	DC to 150	Hz
V _{out(flag)}	Output Voltage Primary Threshold Current Level	-0.3 to VCC + 0.3	V
I _{out(flag)}	Flag Output Current	100	mA
P _{max}	Power Dissipation (TC = 105 °C)	TBD	W
E _{s/b}	Clamped Energy During Output Power Clamping	300	mJ
V _{ESD}	ESD Voltage (HVC Pin)	± 4	KV
V _{ESD}	ESD Voltage (Other Pins)	± 2	KV
I _{BD}	Input Darlington Base Current	150	mA
V_{BD}	Input Darlington Base Voltage	Internally Limited	V
Tj	Operating Junction Temperature	-40 to 150	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

^(*) With 10 mils Al wire


THERMAL DATA

R _{thj-case}	Thermal Resistance Junction Case	(MAX)	1.2	°C/W
R _{thj-h}	Thermal Resistance Junction Heatsink with FR4	(MAX)	TBD (★)	°C/W
T _{sold}	Lead Temperature During Soldering	(MAX)	TBD (★)	°C

^(★) see application note AN515/1094 on VIPower data-book 1st edition.

2/7

CONNECTION DIAGRAM

PIN FUNCTION

No	NAME	FUNCTION		
1-5	GND	Emitter Power Ground		
6	GND	Control Ground (*)		
7	V _{CC}	Logic Supply Voltage		
8	BD	ase Darlington		
9	INPUT	Logic Input Channel (Internal Pull Down)		
10	FLAG	Diagnostic Output Signal (Open Emitter)		
TAB	HVC	rimary Coil Output Driver (Open Collector)		

^(*) Pin 6 must be connected to pins 1-5 externally

ELECTRICAL CHARACTERISTICS (5.3V < V_b < 24V; V_{CC} = 5 V \pm 10%; -40°C < T_j < 125°C; R_{coil} = 580 m Ω ; L_{coil} = 3.75 mH; unless otherwise specified; see note 1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{cl}	High Voltage Clamp	I _{coil} = 6.5 A	320	380	420	V
V _{ce(sat)}	Saturation Voltage of The Power Stage	$I_c = 6.5A;$ $V_{in} = 4V$		1.5	2	V
I _{CC(stdby)}	Stand-by Supply Current	IN = OFF			10	mA
Icc	DC Logic Current	$V_b = 16 \text{ V}$ $I_c = 6.5 \text{ A}$ $f = 100 \text{ Hz}$ Load = Coil $V_{CC} = 5.5 \text{V}$			40	mA
I _{CC(peak)}	Peak DC Logic Current During On Phase	$I_c = 6.5 A$ (see figure 1)		100	150	mA
V_{CC}	DC Logic Voltage		4.5		5.5	V
I _{cl}	Coil Current Limit	-40° C < T _j < 125 $^{\circ}$ C (see note 2 and figure 1)	8.25		10	Α
I _{c(leak)}	Output leakage Current	IN = OFF V _{HVC} = 24V			0.8	mA
I _{C(infl)}	Collector Current with Floating Input	$VCC = 5 V$ VBat = 13.5 V $R_{LOAD} = 1KΩ$; Input Floating			0.8	mA
T _{Ic_ctr}	Thermal Temperature Output Current Control	OUT = ON (see figure 2)	150		(*)	°C

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{inH}	High Level Input Voltage	V _{CC} = 4.5V	4		V _{CC}	V
V_{inL}	Low Level Input Voltage	V _{CC} = 5.5V	-0.3		0.8	V
V _{in(hys)}	Input Threshold Hysteresis		0.4			V
I_{inH}	High Level Input Current	$V_{in} = 4 V$			100	μΑ
I_{inL}	Low Level Input Current	$V_{in} = 0.8 V$			-100	μΑ
l _{inpd}	Input Active Pull-Down	V _{in} = 4 V	10		100	μΑ
V _{diagH}	High Level Flag Output Voltage	$R_{EXT} = 22 \text{ K}\Omega$ $C_{EXT} = 1 \text{ nF}$ (see note 3)	V _{CC} -1		V _{CC}	V
V _{diag} L	Low Level Flag Output Voltage	$R_{EXT} = 22 \text{ K}\Omega$ $C_{EXT} = 1 \text{ nF}$ (see note 3)			0.5	V
I _{diagTH}	Coil Current Level Threshold	$T_j = 25^{\circ}C$ (see figure 1)	4.25	4.5	4.75	Α
I _{diagTD}	Coil Current Level Threshold Drift	(see figure 3)				
l _{diag}	High Level Flag Output Current	$I_C > I_{diagTH}$ $V_{diag} = 3 V$	0.5	TBD		mA
I _{diag(leak)}	Leakage Current On Flag Output	$V_{in} = LOW$ $V_{CC} = 5.5V$			10	μΑ
VF	Antiparallel Diode Forward Voltage	I _c = -1 A			2	V
E _{s/b}	Single Pulse Avalanche Energy	$L = 6 \text{ mH}$ $I_C = 8 \text{ A}$ (see figure 4)	180			mJ
t _{pHL}	Turn-on Delay Time of Coil Current	$R_c = 0.5 \Omega$ $L_c = 3.75 \text{ mH}$ (see figure 5)		TBD		μs
t _{pLH}	Turn-off Delay Time of Coil Current	R_c = 0.5 Ω L_c = 3.75 mH I_c = 6.5 A (see figure 5)		TBD		μs

Note 1: Parametric degradation are allowed with $5.3 < V_b < 10V$ and $V_b > 24V$.

Note 2: The primary coil current value Icl must be measured 1ms after desaturation of the power stage.

PRINCIPLE OF OPERATION

The VB025SP is mainly intended as a high voltage power switch device driven by a logic level input and interfaces directly to a high energy electronic ignition coil.

The input Vin of the VB025SP is fed from a low power signal generated by an external controller that determines both dwell time and ignition point. During Vin high (≥ 4V) the VB025SP increases current in the coil to the desired, internally set current level.

After reaching this level, the coil current remains constant until the ignition point, that corresponds to the transition of Vin from high to low (typ. 1.9V threshold).

During the coil current switch-off, the primary

voltage HVc is clamped at an internally set value Vcl, typically 380V.

The transition from saturation to desaturation, coil current limiting phase, must have the ability to accommodate an overvoltage. A maximum overshoot of 20V is allowed.

FEEDBACK

When the collector current exceeds 4.5A, the feedback signal is turned high and it remains so, until the input voltage is turned-off.

OVERVOLTAGE

The VB025SP can withstand the following transients of the battery line:

- -100V/2msec ($R_i = 10 \Omega$)
- $+100 \text{V}/0.2 \text{msec} (R_i = 10 \Omega)$
- +50V/400msec (R_i = 4.2 Ω , with V_{IN} = 3 V)

Note 3: No Internal Pull-Down

^(*) Internally limited

Fig. 1 Main Waveforms During On Phase

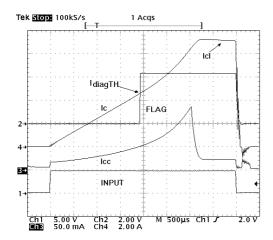


Fig. 3 Flag Current Versus Temperature

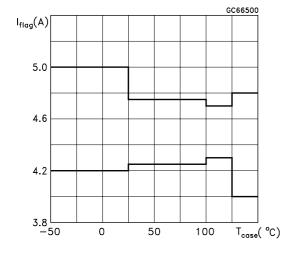
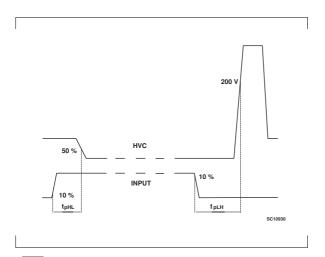
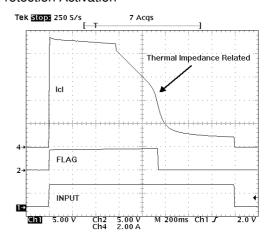
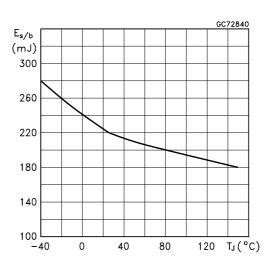
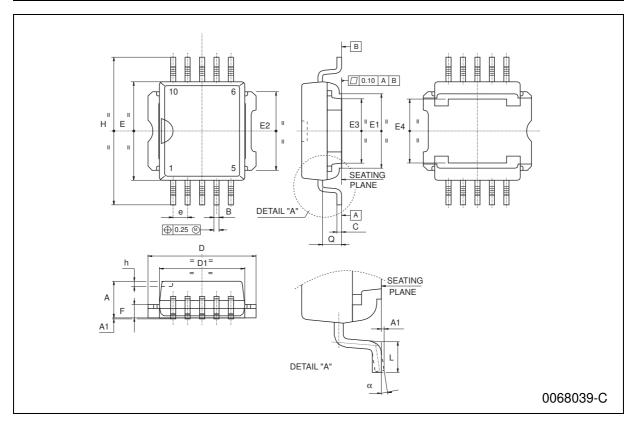



FIG. 5 Propagation Times Definitions.

Fig. 2 Output Current Waveform After Thermal Protection Activation


FIG. 4 Single Pulse Typical Es/b Curve

47

PowerSO-10 MECHANICAL DATA

DIM.	mm		inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	3.35		3.65	0.132		0.144
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
С	0.35		0.55	0.013		0.022
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
Е	9.30		9.50	0.366		0.374
E1	7.20		7.40	0.283		0.291
E2	7.20		7.60	0.283		0.300
E3	6.10		6.35	0.240		0.250
E4	5.90		6.10	0.232		0.240
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
Н	13.80		14.40	0.543		0.567
h		0.50			0.002	
L	1.20		1.80	0.047		0.071
q		1.70			0.067	
α	0°		8°			

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

